Susan Taylor

Faculty Status
(858) 534-3677
Bioinformatics and Systems Biology
Brief Research Description
Relationship of CAPK Structure to Function
Lab Description

cAMP-dependent protein kinase (PKA) is ubiquitous in every mammalian cell with the PKA signaling network regulating processes as diverse as memory, differentiation, development, the cell cycle, and circadian rhythms. One of our goals, in addition to elucidating structures of the PKA subunits, is to map the PKA proteome as it relates to PKA signaling. The PKA interaction network consists not only of the PKA regulatory and catalytic subunits as well as the GPCRs, G-Proteins, cyclases, and phosphodiesterases, as well as PKA substrates but also the scaffold proteins (A Kinase Anchoring Proteins: AKAPs) that target PKA to specific sites in the cell. We are interested, in particular to map PKA that is targeted to organelles such as the mitochondria. A second goal is to map the activity of PKA in live cells using FRET PKA activity reporters that are targeted to specific sites such as the plasma membrane, the mitochondria, or the nucleus.