Molecular economics: New computer models calculate systems-wide costs of gene expression

August 7, 2012

Bioengineers at the University of California, San Diego have developed a method of modeling, simultaneously, an organism’s metabolism and its underlying gene expression.  In the emerging field of systems biology, scientists model cellular behavior in order to understand how processes such as metabolism and gene expression relate to one another and bring about certain characteristics in the larger organism.

In addition to serving as a platform for investigating fundamental biological questions, this technology enables far more detailed calculations of the total cost of synthesizing many different chemicals, including biofuels.  Their method accounts, in molecular detail, for the material and energy required to keep a cell growing, the research team reported in the journal Nature Communications.

“With this new method, it is now possible to perform computer simulations of systems-level molecular biology to formulate questions about fundamental life processes, the cellular impacts of genetic manipulation or to quantitatively analyze gene expression data,” said Joshua Lerman, a Ph.D. candidate in Bernhard Palsson’s Systems Biology Research Group.

Full story